Select a result to preview
已知 a,b,c∈R+,M>1,abc=M, 且 max(a,b,c)≤M, 求 N=a+b+c−1a−1b−1c 的最小值.
由条件得 M=abc≥Mbc⇒bc≤1. 此外 M=abc≤M3⇒M≥1. 进而N=a−1a+(b+c)(1−1bc)≥a−1a+2bc(1−1bc)=a−1a+2Ma(1−aM)记f(x)=x2−1x2+2(Mx−xM),0≤x≤M, 则f′(x)=(x3−M)(xM−1)x3M, 则f(x)在(0,1M), (M6,M)上增,在(1M,M6)上减,因此 N=f(x2)≥f(M6)=3(M3−1M3), 取等条件为 a=b=c=M3.